New Features of ANSI C++ Standard €451

The type must be a pointer or a reference to a defined class type. The argument object
must be expression that resolves to a pointer or reference. The use of the operator
dynamic_cast() is also called a type-safe downcast.

The typeid Operator

We can use the typeid operator to obtain the types of unknown objects, such as their class
name at runtime. For example, the statement

char *objectType = typeid(object).name();

will assign the type of "object” to the character array objectType which can be printed out,
if necessary. To do this, it uses the name() member function of the type_info class. The
object may be of type int, float, etc. or of any class.

We must include <typeinfo> header file to use the operators dynamic_cast and typeid
which provide run-time type information (RTTI).

I16.4 Class Implementation

ANSI C++ Standard adds two unusual keywords, explicit and mutable, for use with class
members.

The explicit Keyword

The explicit keyword is used to declare class constructors to be "explicit” constructors. We
have seen earlier, while discussing constructors, that any constructor called with one
argument performs implicit conversion in which the type received by the constructor is
converted to ar object of the class in which the constructor is defined. Since the conversion
is automatic, we need not apply any casting. In case, we do not want such automatic
conversion to take place, we may do so by declaring the one-argument constructor as explicit
as shown below:

ciass ABC

{
int m;

public:
explicit ABC (int 1) // constructor
{
m=i;

}
[/ e

452e¢ Object-Oriented Programming with C++

Here, objects of ABC class can be created using only the following form:

ABC abcl1(100);

The automatic conversion form
ABC abcl = 100;

is not allowed and illegal. Remember, this form is permitted when the keyword explicit is
not applied to the conversion.

The mutable Keyword

We know that a class object or a member function may be declared as const thus making
their member data not modifiable. However, a situation may arise where we want to create
a const object (or function) but we would like to modify a particular data item only. In such

situations we can make that particular data item modifiable by declaring the item as mutable.
Example:

mutable int m;

Although a function(or class) that contains m is declared const, the value of m may be
modified. Program 16.2 demonstrates the use of a mutable member.

#include <jostream>
using namespace std;

class ABC
{
private:
mutable int m; // mutable member
public:
explicit ABC(int x = 0)
{

mo= X:
}
void change() const // const function
{
m = m+10;

}
int display() const // const function
{

}

return m;

(Contd)

New Features of ANSI C++ Standard 0453

int main()

{
const ABC abc(100); /] const object
cout << "abc contains: " << abc.display();
abc.change(); // changes mutable data
cout << "\nabc now contains: " << abc.display();

cout << "\n";

return 0;

PROGRAM 16.2

The output of Program 16.2 would be:

abc contains: 100
abc now contains: 110

role

Although the function change() has been declared constant, the value of m has been
modified. Try to execute the program after deleting the keyword mutable in the program.

|16.5 Namespace Scope

We have been defining variables in different scopes in C++ programs, such as classes,
functions, blocks, etc. ANSI C++ Standard has added a new keyword namespace to define
a scope that could hold global identifiers. The best example of namespace scope is the C++
Standard Library. All classes, functions and templates are declared within the namespace
named std. That is why we have been using the directive

using namespace std;

in our programs that uses the standard library. The using namespace statement specifies
that the members defined in std namespace will be used frequently throughout the program.

Defining a Namespace

We can define our own namespaces in our programs. The syntax for defining a namespace
is similar to the syntax for defining a class. The general form of namespace is:

namespace namespace_name

{
// Declaration of

// variables, functions, classes, etc.

454 ¢ ' Object-Oriented Programming with C++

reote
There is one difference between a class definition and a namespace definition. The
namespace is concluded with a closing brace but no terminating semicolon.

Example:

namespace TestSpace

{
int m;
void display(int n)
{

}

} // No semicolon here

cout << n;

Here, the variable m and the function display are inside the scope defined by the
TestSpace namespace. If we want to assign a value to m, we must use the scope resolution
operator as shown below,

TestSpace::m = 100;
Note that m is qualified using the namespace name.

This approach becomes cumbersome if the members of a namespace are frequently used. In
such cases, we can use a using directive to simplify their access. This can be done in two ways:

using namespace namespace name; // using directive

using namespace_name::member name; // using declaration

In the first form, all the members declared within the specified namespace may be accessed
without using qualification. In the second form, we can access only the specified member in
the program. Example:

using namespace TestSpace;
m = 100; // OK
display(200); // 0K

using TestSpace::m;
m = 100; /] 0K
display(200); // Not ok, display not visible

Nesting of Namespaces

A namespace can be nested within another namespace. Example:
namespace NS1 '

{

New Features of ANSI C++ Standard @ 455

......

namespace NS2

int m = 100;

......

To access the variable m, we must qualify the variable with both the enclosing namespace
names. The statement

cout << NS1::NS2::m;
wiil display the value of m. Alternatively, we can write

using namespace NSI;
cout << NS2::m;

Unnamed Namespaces

An unnamed namespace is one that does not have a name. Unnamed namespace members
occupy global scope and are accessible in all scopes following the declaration in the file. We
can access them without using any qualification.

A common use of unnamed namespaces is to shield global data from potential name
classes between files. Every file has its own, unique unnamed namespace.

Program 16.3 demonstrates how namespaces are defined, how they are nested and how
an unnamed namespace is created. It also illustrates how the members in various namespaces
are accessed.

#include <iostream>
using namespace std;

// Defining a namespace
namespace Namel

{
double x = 4.56;
int m = 100;

namespace Name2 // Nesting namespaces

{

double y = 1.23;
(Contd)

456 — Object-Oriented Programming with C++

namespace // Unnamed namespace

{
int m = 200;

}

int main()

{
cout << "x = " << Namel::x << "\n"; // x is qualified
cout << "m = " << Namel::m << "\n";
cout << "y = " << Namel::Name2::y << "\n"; // y is fully qualified
cout << "m = " << m << "\n"; // m is global
return 0;

}

PROGRAM 16.3

The output of Program 16.3 is:

x = 4.56
m = 100
y = 1.23
m = 200
reote
We have used the variable m in two different scopes.)

Program 16.4 shows the application of both the using directive and using declaration.

#include <iostream>

using namespace std;

// Defining a namespace
namespace Namel

double x = 4.56;
int m = 100;

namespace Name2 // Nesting.namespaces

(Contd)

New Features of ANSI C++ Standard 0457

double y = 1.23;
1

namespace Name3

!

1
int m = 200;
int n = 300;

}

}nt main()
using namespace Namel; // bring members of Namel
' // to current scope
cout << "x = " << x << "\n"; // x is not qualified
cout << "m = " << m << "\n"j
cout << "y = " << Name2::y << "\n"; // y is qualified
using Name3::n; // bring n to current scope
cout << "m = " << Name3::m << "\n"; // m is qualified
cout << "n = " << n << "\n"; // n is not qualified
return 0;

PROGRAM 16.4

The output of Program 16.4 would be:

= 4.56
= 100
1.23
= 200
= 300

oD 3K 3 X
1

rnote
(Understand how the data members are qualified when they are accessed.)

Program 16.5 uses functions in a namespace scope.

#include <iostream>
using namespace std;

namespace Functions

{

(Contd)

458 0— Object-Oriented Programming with C++

int divide(int x,int y) // definition

{
return{(x/y);
}
int prod(int x,int y); // declaration only
}
int Functions::prod(int x,int y) // qualified
{
return{x*y);
}
int main()
{
using namespace Functions;
cout << "Division: " << divide(20,10) << "\n";
cout << "Multiplication: " << prod(20,10) << "\n";
return 0;
}

PROGRAM 16.5

The output of Program 16.5 would be:

Division: 2
Multiplication: 200 d

rote
When a function that is declared inside a namespace is defined outside, it should be
qualified.

Program 16.6 demonstrates the use of classes inside a namespace.

'S IN NAMESPACE SCOPE

include <iostream>
using namespace std;

namespace Classes ’

{
{

class Test

(Contd)

New Features of ANSI C++ Standard 0459

private:
int m;

public:

Test(int a)
{

}

m = aj;

void display()
{

}

cout << llm = n << m << Il\nll;

s
}

int main()

{
// using scope resolution
Classes::Test T1(200);
Ti.display();

// using directive

using namespace Classes;
Test T2(400);
T2.display();

return 0;

PROGRAM 16.6
The output of Program 16.6 would be:
m = 200
m = 400

|16.6 Operator Keywords

The ANSI C++ Standard proposes keywords for several C++ operators. These keywords,
listed in Table 16.1, can be used in place of operator symbols in expressions. For example,
the expression

x>y & m = 100

may be written as

460@

x >y and m not_eq 100

Object-Oriented Programming with C++

Operator keywords not only enhance the readability of logical expressions but are alzo
useful in situations where keyboards do not support certain special characters such as &,

A and ~.

Table 16.1 Operator keywords

Operator

&&
I
!

>— @

|16.7 New Keywords

Operator keyword

and
or
not
not_eq
bitand
bitor
Xor
compl
and_eq
or_eq

Xor_eq

Description

logical AND

logical OR

logical NOT
inequality

bitwise AND

bitwise inclusive OR
bitwise exclusive OR
bitwise complement
bitwise AND assignment
bitwise inclusive OR
assignment

bitwise exclusive OR
assignment

SARMPRIGIS SO S SRR

ANSI C++ has added several new keywords to support the new features. Now, C++ contains
64 keywords, including main. They are listed in Table 16.2. The new keywords are boldfaced.

Table 16.2 ANSI C++ keywords

asm else namespace template
auto enum new this
bool explicit operator throw .
break export private true 3
case extern protected try
catch false public tvpedef ,
char float register typeid L
class for reinterpret_cast typename i
const friend return union
const_cast goto short unsigned
continue if signed using
default inline sizeof virtual
delete int static void
do long static-cast volatile

double main struct wchar_t
dynamic_cast mutable switch while

New Features of ANSI C++ Standard @ 461

l16.8 New Headers

The ANSI C++ Standard has defined a new way to specify header files. They do not use .h
extension to filenames. Example:

#include <iostream>
#include <fstream>

However, the traditional style <iostream.h>, <fstream.h>, etc. is still fully supported.

Some old header files are renamed as shown below:

&
&
&
&
&
&
&
&
e
&
&
&

Old style New style
<assert.h> <cassert>
<ctype.h> <cctype>
<float.h> <cfloat>
<limits.h> <climits>
<math.h> <cmath>
<stdio.h> <cstdio>
<stdlib.h> <cstdlib>
<string.h> <cstring>
<time.h> <ctime>
H
SUMMARY

ANSI C++ Standard committee has added many new features to the original C++
language specifications.

Two new data types bool and wchar_t have been added to enhance the range of data
types available in C++.

The bool type can hold Boolean values, true and false.
The wehar_t type is meant to hold 16-bit character literals.

Four new cast operators have been added: static_cast, const_cast, reinterpret_cast
and dynamic_cast.

The static_cast operator is used for any standard conversion of data types.

The const_cast operator may be used to explicitly change the const or volatile
attributes of objects.

We can change the data type of an object into a fundamentally different type using the
reinterpret_cast operator.

Casting of an object at run time can be achieved by the dynamic_cast operator.
Another new operator known as typeid can provide us run time type information about
objects.

A constructor may be declared explicit to make the conversion explicit.

We can make a data item of a const object or function modifiable by declaring it mutable.

462 @ Object-Oriented Programming with C++

&

&

&
&

ANSI C++ permits us to define our own namespace scope in our program to overcome
certain name conflict situations.
Namespaces may be nested.
Members of namespace scope may be accessed using either using declaration or using
directive.
ANSI C++ proposes keywords that may be used in place of symbols for certain operators.
In new standard, the header files should be specified without .h extension and the
using directive
using namespace std;
should be added in every program.
Some old style header files are renamed in the new standard. For example math.h file
is known as cmath.
Key Terms
> and » dynamic_cast
> and_eq » dynamic casts
» ANSIC++ » explicit constructor
» bitand > false value
» bitor » global identifiers
> bool » header file
» Boolean » implicit conversion
» C_type casting » mutable member
» C++ standard » name() function
» C++ type casting » namespace scope
» casts » nesting namespaces
> compl > not
» const > not_eq
» const function » operator keywords
» const object > or
» const_cast > or_eq
» constant casts » polymorphic objects
» current scope » reinterpret casts
» downcast » reinterpret_cast

(Contd)

New Features of ANSI C++ Standard —0 463

> RTTI > typeid

» source type » typeinfo header

» standard library » unnamed namespaces
» static casts » using declaration

> static_cast » using directive

» std namespace » using namespace

» target typc > volatile

» true value > wchar_t

» type casts > wide_character literal
» type_info class » xor

> type_safe casting > xor_eq

I Review Questions

16.1 List the two data types added by the ANSI C++ standard committee.

16.2 What is the application of bool type cariables?

16.3 What is the need for wehar_t character type?

16.4 Lust the new operators added by the ANSI C++ standard committee.

16.5 What is the application of const_ecast operator?

16.6 Why do we need the operator statie_cast while the old stvle cast does the same
Job?

16.7 How does the reinterpret_cast differ from the static_cast’

16.8 What is dynamic casting?. How is it achieved in C++?

16.9 What is typeid operator?. When is it used?

16.10 What is explicit conversion?. How i< it achicved?

16.11 When do we vse the keviword mutable?

16.12 What is ¢ namespace conflict? Houw 1< it handled in C++7

16.13 How do we access the vartables declared in a named namespace?

16.14 What is the difference between using the using namespace directive and using
the using rleclaration [or arressing namespace members?

16.15 What is wrong with the following code segment?

const int m = 100;

int *ptr o= &m,

464 & Object-Oriented Programming with C++
16.16 What is the problem with the following statements?

const int m = 100;
double *ptr = const_cast<double*>(&m);

16.17 What will be the output of the following program?

#include<iostream.h>
class Person

{

/] e
int main()

Person John;

cout << " John is a ";

cout << typeid(John).name() << "\n";
}

16.18 What is wrong with the following namespace definition?

namespace Main

{ int main()
/)
}
}
I Debugging Exercises

16.1 Identify the error in the following program.

#include <iostream>

class A

{
public:

A()

New Features of ANSI C++ Standard @ 465

explicit B{int)
{
}

bs

void main()

{
A al=12;
A az;
A a3=al;

B bl = 12;

16.2 Identify the error in the following program.

#include <iostream.h>

class A
{
protected:
int i;
public:
AQ)

int getI()
{

4666 Object-Oriented Programming with C++

return i;
}s

class B: public A
{
public:

B()

{

}

int getl()
{

return i + 1;
}s

void main()

{
A *a = new A();
B *b = static_cast<B*>(a);
cout << b->getl();

16.3 Identify the error in the following program.
#include <iostream.h>

namespace A

{
int i;
void displ()
{
cout << i,
}
}

void main()
{

namespace Inside

New Features of ANSI C++ Standard 0467

int insidel;
void dispInsidel()
{

cout << insidel;

A::i = 10;
cout << A::i;
A::dispI();

Inside::insidel = 20;
cout << Inside::insidel;
Inside::dispInsidel();

I Programming Exercises

16.1 Write a program to demonstrate the use of reinterpret_cast operator.

16.2 Define a namespace named Constants that contains declarations of some
constants. Write a program that uses the constants defined in the namespace
Constants.

YVYVYVYVYYVYVYVYYVYVYYYVYYVYY

Key Concepts

Software development components
Procedure-oriented development tools
Object-oriented paradigm

OOP notations and graphs

Data flow diagrams

Object-oriented design

Top-down decomposition

System implementation
Procedure-oriented paradigm

Classic software development life cycle
Fountain model

Object-oriented analysis

Textual analysis

Class hierarchies

Structured design

Prototyping paradigm

Il 7.1 Introduction

Software engineers have been trying
various tools, methods, and procedures to
control the process of software development
in order to build high-quality software with
improved productivity. The methods
provide "how to 's" for building the software
while the tools provide automated or semi-
automated support for the methods. They
are used in all the stages of software
development process, namely, planning,
analysis, design, development and
maintenance. The software development
procedures integrate the methods and tools
together and enable rational and timely
development of software systems (Fig.17.1).
They provide guideines as to how to apply
the methods and tools, how to produce the
deliverables at each stage, what controls
to apply, and what milestones to use to
assess the progress.

Object-Oriented Systems Development © 469

Software development

Procedures

Methods

Tools

Fig.17.1 & Software development components

There exist a number of software development paradigms, each using a different set of
methods and tools. The selection of a particular paradigm depends on the nature of the
application, the programming language used, and the controls and deliverables required.
The development of a successful system depends not only on the use of the appropriate
methods and techniques but also on the developer's commitment to the objectives of the
system. A successful system must:

satisfy the user requirements,

be easy to understand by the users and operators,

be easy to operate,

have a good user interface,

be easy to modify,

be expandable,

have adequate security controls against misuse of data,
handle the errors and exceptions satisfactorily, and

be delivered on schedule within the budget.

PRI oN -

In this chapter, we shall review some of the conventional approaches that are being
widely used in software development and then discuss some of the current ideas that are
applicable to the object-oriented software development.

|17.2 Procedure-Oriented Paradigms

Software development is usually characterized by a series of stages depicting the various
tasks involved in the development process. Figure 17.2 illustrates the classic software life
cycle that is most widely used for the procedure-oriented development. The classic life cycle
is based on an underlying model, commonly referred to as the "water-fall” model. This model
attempts to break up the identifiable activities into series of actions, each of which must be

4700— Object-Oriented Programming with C++

completed before the next begins. The activities include probleni definition, requirement
analysis, design, coding, testing, and maintenance. Further refinements to this model include
iteration back to the previous stages i order to incorporate any changes or missing
Problem Definition: This activity requives a precise definition of the problem in user terms.
A clear statement of the problem is erucial to the success of the sottware. It helps not only
the developer but also the user to understand the problent better.

[T
Problem | _
i definition |
L.,Ar, _,‘.,, i .
P X
I | i f
! ——— Analysis iy

i

b P ¥
|

i‘ [—-——7 Design |—-——

|
i |

‘__.._,____J,_“AI_.._.J '
i i
‘ I A
t [GIrs I - — —
| == A } |
‘r 1 li i
S — 1
| | ! |
: ! , Lo ’
| 1 | T e 1
. i ; | I
L e T esting e
! ! i i
! | |
. ‘ ‘ |
! ' (!
' v i ¥
| T
} ' Mainte- |
| : ! ! pance !
i | i | I
; |
; | l
: ! | | |
[L S AR k4 B |
3

Fig. 17.2 s Classic soffeeare deceiopmenil Iile cvcie (Embedded water-fali' mode)
Analysis: This covers a detailed study of the requirements of both the user and the software.
This activity is basically concerned with what of the system such as

what are the inputs to the system?
what are the processes required?
what are the outputs expected?
what are the constraints?

LR R

Design: The design phase deals with various concepts of system design such as data
structure, software architecture, and algorithins. This phase translates the requirements
into a representation of the software. This stage answers the questions of how.

Coding: Coding reters to the translation of the design into machine-readable form. The
more detailed the design, the ecasier is the coding, and better its reliabilitv.

Obhject-Oriented Systems Development 9471

Testing: Once the code 1s written, it should be tested rigorously for correctness of the code
and results. Testing may involve the individual units and the whole system. It requires a
detaiied plan as to what, when ana how to test.

Maintenance: After the sofiware has been installed, it may undergo some changes. This
may occur due to a change in the user's requirement, a change in the operating environment,
or an error in the software that has not been fixed during the testing. Maintenance ensures
that these changes are incorporated wherever necessary.

Each phase of the life cycle has its own goals and outputs. The output of one phase acts as
an input to the next phase. Table 17.1 shows typical outputs that could be generated for

each phase of the life cycle.

Table 17.1 Outputs of clussic software life cycle

Phase Output
Problem definition . Problem statement sheet
: RSN . Project request
| Analysis . Requirements document
twhat} . Feasibility report

e Specifications document
; . Acceptance test criteria

Design 0 Design document
{how . Test class design
Coding e Code document (program}
(how! . Test plan
. User manual
Testing . Tested code
{what and how) . Test results

. System manual
Maintenance . Maintenance log sheets
Version documents

S0t 5 ey

R

The software life cycle, as described above, is often implemented using the functional
decomposition technique, popularly known as top-down, modular approach. The functional
decomposition technique is based on the interpretation of the problem space and its translaion
into the solution space as an inter-dependent set of functions. The functions are decomposed
into a sequence of progressively simpler functions that are eventually implemented. The
final system is seen as a set of functions that are organized in a top-down hierarchical
structure.

There are several flaws in the top-down, functional decomposition approach. They include:
1. It dees not allow evolutionary changes in the software.

2. The svstem is characterized by a single function at the top which is not always
true. In fact many systems have no top.

472 @ Object-Oriented Programming with C++

3. Data is not given the importance that it deserves.
4. It does not encourage reusability of the code.

|17.5 Procedure-Oriented Development Tools

A large number of tools are used in the analysis and design of the systems. It is important
to note that the process of systems development has been undergoing changes over the
vears due to continuous changes in the computer technology. Consequently, there has been
an evolution of new system development tools and techniques. These tools and techniques
provide answers to the how questions of the system development.

The development tools available today may be classified as the first generation, second
generation, and third generation tools. The first generation tools developed in the 1960's
and 1970's are called the traditional tools. The second generation tools introduced in the
late 1970's and early 1980's are meant for the structured systems analysis and design and
therefore they are known as the structured tools. The recent tools are the third generation
ones evolved since late 1980's to suit the object-oriented analysis and design.

Table 17.2 shows some of the popular tools used for various development processes
under the three categories. Although this categorization is questionable, it gives a fair idea
of the growth of the tools during the last three decades.

Table 17.2 System development tools

Process First generation Second generation Third generation

Physical processes System flowcharts Context diagrams Inheritance graphs
Object-relationship charts

Data Layout forms Data dictionary Objects object dictionary

representation Grid charts

Logical processes Playscript English Decision tables &trees Inheritance graphs

narrative Data flow diagrams Data flow diagrams

Program Program flowcharts Structure charts State change diagrams

representation 1/0 layouts Warnier /Orr diagrams Ptech diagrams
Coad/Yourdon charts t

G TR S SN NI e S T MR E s B RN S AR s ST Y AT R T L BT
This section gives an overview of some of the most frequently used first and second
generation tools. Object-oriented development tools will be discussed later in this chapter

(as and when they are required).

System flowcharts: A graphical representation of the important inputs, outputs, and data
flow among the key points in the system.

Program flowcharts: A graphical representation of the program logic.

Playscripts: A narrative description of executing a procedure.

Layout forms: A format designed for putting the input data or displaying results.

Grid charts: A chart showing the relationship between different modules of a system.
Context diagrams: A diagram showing the inputs and their sources and the outputs and
their destinations. A context diagram basically outlines the system boundary.

Object-Oriented Systems Development 9473

Data flow diagrams: They describe the flow of data between the various components of a
system. It is a network representation of the system which includes processes and data
files.

Data dictionary: A structured repository of data about data. It contains a list of terms and
their definitions for all the data items and data stores.

Structure chart: A graphical representation of the control logic of functions (modules)
representing a system.

Decision table: A table of contingencies for defining a problem and the actions to be taken.
It presents the logic that tells us what action to take when a given condition is true or
otherwise.

Decision tree: A graphic representation of the conditions and outcomes that resemble the
branches of a tree.

Warnier/Orr diagrams: A horizontal hierarchy chart using nested sets of braces, psuedo-
codes, and logic symbols to indicate the program structure.

|17.4 Object-Oriented Paradigm

The object-oriented paradigm draws heavily on the general systems theory as a conceptual
background. A system can be viewed as a collection of entities that interact together to
accomplish certain objectives (Fig. 17.3). Entities may represent physical objects such as
equipment and people, and abstract concepts such as data files and functions. In object-
oriented analysis, the entities are called objects.

PROCESS

Entity \ Entity

L, OUTPUT
(Objectives)

INPUT —— Entity

Entity

Fig.17.3 < A system showing inter-relationship of entities

As the name indicates, the object-oriented paradigm places greater emphasis on the objects
that encapsulate data and procedures. They play the central role in all the stages of the
software development and, therefore, there exists a high degree of overlap and iteration
between the stages. The entire development process becomes evolutionary in nature. Any

474 ¢ Object-Oriented Programming with C++

graphical representation of the object-oriented version of the software development life
cycle must, therefore, take into account these two aspects of overlap and iteration. The
result is a “fountain model” in place of the classic “water-fall” model as shown in Fig. 17.4.
This model depicts that the development reaches a higher level only to fall back to a previous
level and then again climbing up.

Maintenance Further development

Object-oriented Objects
programming in program
Objects

Object-oriented
design

in solution space

Object-oriented
analysis Objects

in problem space

Fig. 174 < Fountain model of object-oriented software development

Object-oriented analysis (OOA) refers to the methods of specifying requirements of the
software in terms of real-world objects, their behaviour, and their interactions. Object-
oriented design (OOD), on the other hand, turns the software requirements into specifications
for objects and derives class hierarchies from which the objects can be created. Finally,
object-oriented programming (OOP) refers to the implementation of the program using objects,
in an object-oriented programming language such as C++.

By developing specifications of the objects found in the problem space. a clear and well-
organized statement of the problem is actually built into the application. These objects form
a high-level layer of definitions that are written in terms of the problem space. During the
refinement of the definitions and the implementation of the application objects, other objects
are identified. Figure 17.5 illustrates the layers of the object specifications that result from
this process.

All the phases in the object-oriented approach work more closely together because of the
commonality of the object model. In one phase, the problem domain objects are identified,
while in the next phase additional objects required for a particular solution are specified.
The design process is repeated for these implementation-level ohjects.

Object-Onented Systems Development 0475

Problem Q ‘ _ '
space Objects defined in

L problem space

/

/

\
e i A A
/ P ro \ /
/ \ “', / \
A T S

: \ /
— ,‘ -4 / \
,
/ @ O b Solution specific

O objects defined

Fig. 17.5 <> Lavyers of object specifications

P —— ORISR §

In contrast to the traditional top-down functional decomposition approach, the object-
oriented approach has many attributes of both the top-down and bottom-up designs. The
top funcional decomposition techniques can be applied to the design of individual classes,
while the final system can be constructed with the help of class modules using the bottom-
up approach.

|17.5 Object-Oriented Notations and Graphs

Graphical notations are an essential part of any design and development process, and object-
oriented design is no exception. We need notations to represent classes, objects, subclasses,
and their inter-relationships. Unfortunately, there are no standard notations for representing
the objects and their interactions. Authors and researchers have used their own notations.
Some of them are used more frequently while others are not. Figures 17.6 through 17.14
show some of the commonly used notations to represent the following:

1. Classes and objects.

2. Instances of objects.

3. Message communication between ohjects.
4. Inheritance relationship.

5. Classification relationship.

6. Composition relationship.

7. Hierarchical chart.

8. Client-server relationship.

9. Process layering.

We must use these notations and graphs wherever possible. They improve not only the
clarity of the processes but also the productivity of the software developers.

476e

Classname

Data

Functions

Classname
J
Functions 1
I
Functions 2 Data
I
Functions 3

|

(b)

Object-Oriented Programming with C++

Classname

Functions

1]

Data

(©)

Fig.17.6 <« Various forms of representation of classes/objects i

Person

John

Class

Ram

Fig. 17.7 - < Instances of objects i

L — |

Object A

Ahmed

Object B

Fig. 17.8 & Message communication between objects

Car

A

Object-Oriented Systems Development

0477

Base class

Derived class

Fig.17.9 ¢ Inheritance relationship |

:

Vehicle

—~
a-kind-of

(a)

V ehicle

Cycle

Car

(b)

Cycle

Fig. 17.10 <« Classification relationship E

478 @

Object-Oriented Programming with T+

e ~
-
-~ .
" \\\\a—parbnf B
“) S

(a)

House

|

{ l

T

i

boA

AN

\-.
< IEN

Door

3
o
Q
g

]

; o - -
Fig. 17.11 & Coinpositici rela
| ’[
P A i

P — Aj*\
//// : e
// \\\
g v ~.
& S — ——

Fig.17.12 & Hierarchical chart

Object-Oriented Systems Development 0479

T T
| ~ |
.
i S | \\\1‘ e
I L
Server Client

Fig.17.13 < Client-server relationship

e o - s s i s

Process . i Process

r
N s -
b - e -

Process Process
| C D
i

Fig. 17.14 = Process layering (A process may have typically five to seven objects)
8 yenng ypieaily |)

o g A - P BT — a . s v

|17.6 Steps in Object-Oriented Analysis

Object-oriented analysis provides us with a simple, yet powerful, mechanism for identifying
objects, the building block of the software to be developed. The analysis is basically concerned
with the decomposition of a problem into its component parts and establishing a logical
model to describe the system functions.

The object-oriented analysis (OOA) approach consists of the following steps:

Understanding the preoblem.
Drawing the specifications of requirements of the user and the software.
Identifying the objects and their attributes.
Identifying the services that each object is expected to provide (interface).
Establishing inter-connections (collaborations) between the objects in terms of ser-
vices required and services rendered.

Although we have shown the above tasks as a series of discrete steps, the last three
activities are carried out inter-dependently as shown in Fig. 17.15.

SESEEENES

4800 Object Oriented Programming with C++

| 213 b'(“ﬂ !
! dein it
L

-

.
| Reaurement |

S J‘-L mun

E Opjects in [T T T :
! problem space “ identity obiects ; |
1

! S | !
| ‘ i E) |
1 B B L ‘
: {—7777] ' o ldentlfv—" :
identify servi |

| L dentify services coliaborations i
| e Lo " R i
e e e

4 .

(: Design)

Fig. 17.15 > Activities of object-oriented analysis

Problem Understanding

The first step in the analysis process is to understand the problem of the user. The problem
statement should be refined and redefined in terms of computer system engineering that
could suggest a computer-based solution. The problem statement should be stated, as far as
possible, in a single, grammatically correct sentence. This will enable the software engineers
to have a highly focussed attention on the solution of the problem. The problem statement
provides the basis for drawing the requirements specification of both the user and the
software.

Requirements Specification

Once the problem is clearly defined, the next step is to understand what the proposed
system is required to do. It is important at this stage to generate a list of user requirements.
A clear understanding should exist between the user and the developer of what is required.
Based on the user requirements, the specifications for the software should be drawn. The
developer should state clearly

What outputs are required.
What processes are involved to produce these outputs.
What inputs are necessary.
What resources are required.
These specifications often serve as a reference to test the final product for its performance
of the intended tasks.

Identification of Objects

Objects can often be identified in terms of the real-world objects as well as the abstract
objects. Therefore, the best place to look for objects is the application itself. The application
may be analyzed by using one of the following two approaches:

Object-Oriented Systems Development 0481

1. Data tlow diagrams (DFD)
2. Textual analysis (TA)

Data Flow Diagram

The application can be represented in the form of a data flow diagram indicating how the
data moves from one point to another in the system. The boxes and data stores in the data
flow diagram are good candidates for the objects. The process bubbles correspond to the
procedures. Figure 17.16 illustrates a typical data flow diagram. It is also known as a data
flow graph or « bubble chart.

A DFD can be used to represent a system at any level of abstraction. For example, the
DFD shown in Fig. 17.16 may be expanded to include more information (such as payment
details) or condensed as illustrated in Fig. 17.17 to show only one bubble.

Data
store

IL\ Shipping

Order instructions

1 Bookseller - — Process } TP — Stores
L.,_,,,,fi,,i \ order

o) .

\\ T Check / |

Books database

N credit status /,/
. y
N, Data Customer /
\ store database
N /

SV A s
Shipping | / Shipment

notice \ ' / information

Collect,

customer
order

Fig. 17.16 < Data flow diagram for order processing and shipping for a publishing conipany

"""""""] Order linstructions
Customer E— p;orngs Warehouse

Fig.17.17 & Fundamental data flow diagram

4820— Object-Oriented Programming with C++

Textual Analysis

This approach is based on the textual description of the problem or proposed solution. The
description may be of one or two sentences or one or two paragraphs depending on the type
and complexity of the problem. The nouns are good indicators of the objects. The names
can further be classified as proper nouns, common nouns. and mass or ahstract nouns.
Table 17.3 shows the various types of nouns and their meaning.

Table 17.3 Types of nouns

Type of noun Meaning Example
Common noun Describe classes of things Vehide, enstomer
(entites) income. deduction
Proper noun Names of sperific things Maruty car, John, ABRC
company
Mass or abstract noun Desgeribe a quality. Quantity or an Salary-income house-dean
activity associated with a noun feet, traffic &

LR A S

R i

[t is important to note that the context and semantics must be used to determmine the
noun categories. A particular word may mean a common noun in one context and a mass or
abstract noun in another.

These approaches are only a guide and not the ultimate tools. Creative perception and
intuition of the experienced developers play an important roie in identifying the objects.

Using one of the above approaches, prepare a list of objects for the application problem,
This might include the following tasks:

1. Prepare an object table.

2. Identify the objects that belong to the solution space and those which belong to the
problem space only. The problem space objects are outside the software boundary.

3. Identify the attributes of the solution space objects.

Remember that not all the nouns will be of interest to the final realization of the solution.
Consider the following requirement statements of a system:

Identification of Services

Once the objects in the solution space have been identified. the next step is to identify a set
of services that each object should offer. Services are identified by examining all the verbs
and verb phrases in the problem description statement. Verbs which can note acuons or
occurrences may be classified as shown in Table 17 4.

Doing verbs and compare verbs usually give rise to services (which we call as function=in
C++). Being verbs mndicate the existence of the classification structure while having vorhs
give rise to the composition structures.

Object-Oriented Systems Development 9483

Table 17.4 Classification of verbs

Types of verb Meaning Examples 2
Doing verbs operations read , get, display, buy
Being verbs classifications is an, belongs to
Having verbs composition has an, is part of
Compare verbs operations is less than, is equal to
Stative verbs invariance-condition to be present, are owned

Establishing Interconnections

This stepdentifies the services that objects provide and receive. We may use an information
foon dingeun TFD o ar entity-relationship (ER) diagram to enlist thas information. Hers
we must establish a correspondence between the services and the actual information
imessages) that are being communicated.

l‘l7.7 Steps in Object-Oriented Design

Desizn iz concerned with the mapping of objectsin the problem space into objects in the solution
~pace. and ereating an overall structure tarchitectural miodel) and computational models of
the <ystem. Thisstage normally uses the bottom-up approach to build the structure ofthe system
and the top-down functional decomposition approach to design the class member functions
that provide services. Itis particularly important toconstruct structured hierarchies, toidentify
abstract classes. and to simplify the inter-object communications. Reusability of classes from
tie previons designs, dassification of the objects into subsystems and deterniination of
approprinte protocols are some of the considerations of the design stage. The object oriented
decign OO0 approach may Bvvolve the following steps:

1. Review of objects created in the analysis phase.

2 Specification of class dependencies.
3. Organization of class hierarchies.
4. Design of classes.

i

[esign of member functions.
6. Design of driver program.

Review of Problem Space Objects

An exercise to review the objects identified in the problem space is undertaken as a first
step in the design stage. The main objective of this review exercise is to refine the objects in
terms of their attributes and operations and to identify other objects that are solution specific.
Some guidelines that might help the review process are:

1. If onty one object 13 necessary for a service {or operation’, then it operates only on
that object.

9 If two or more objects are required for an operation to occur, then it is necessary to
identifv which object's private part should be known to the operation.

3. If an operation requires knowledge of more than one type of objects, then the
operation is not functionally cohesive and should be rejected.

484 & Object-Oriented Programming with C++

Applying these guidelines will help us refine the scrvices of the objects. Further, the redundant
or extrancous objects are removed, synonymous services are combined and the names of the
operations (functions) are improved to denote clearly the kind of processing involved.

Class Dependencies

Analysis of relationships between the classes is central to the structure of a svstem. Therefore,
it is important te identify appropriate classes to represent the objects in the solution space
and establish their relationships. The major relationships that are important in the context
of design are:

1. Inheritance relationships.
2. Containment relationships.
3. Use relationships.

Inheritance relationship is the highest relationship that can be represented in C++. It
is a powerful way of representing a hierarchical relationship directly. The real appeal and
power of the inheritance mechanism is that it allows us to reuse a class that is almost, but
not exactly, what we want and to tailor the class in a way that it does not introduce any
unwanted side effects into the rest of the class. We must review the attributes and operations
of the classes and prepare a inheritance relationship table as shown in Table 17.5.

Table 17.5 Inheritance relationship table

Class Depends on

A
B A
C A
D B
B1 B

B

B2

Containment relationship means the use of an object of a class as a member of another
class. This is an alternative and complimentary technique to use the class inheritance. But.
it is often a tricky issue to choose between the two techniques. Normally, if there is a need
to override attributes or functions, then the inheritance 1s the best choice. On the other
hand, if we want to represent a property by a variety of types, then the containment
relationship is the right method to follow. Another place where we need to use an ohject as
a member is when we need to pass an attribute of a class as an argument to the constructor
of another class. The “another” class must have a member object that represents the argument.
The inheritance represents ts_a relationship and the containment represernts hus_a
relationship.

Use relationship gives information such as the various classes a class uses and the wayv
it uses them. For example, a class A can use classes B and C 1n several ways:

A reads a member of B.
A calls a member of C.
A creates B using new operator.

Object-Oriented Systems Development 9485

The knoviledge of such rclationships i= important to the design of a program.

Organization of Class Hierarchics

Tn the previous step, we examined the inheritance relationships. We must re-examine them
and create a class hierarchy so that we can reuse as much data and/or functions that have
been designed already. Organization of the class hierarchies involves identification of common
attributes and functions among a group of related claszes and then combining them to form
a new clase. The new class will serve as the super class and the others as subordinate
classes (which derive atfributes from the cuper clas=). The new class may or may not have
the meaning of an obyject by itself. 1f the object 15 created purely to combine the common
attributes, it is called an abstract class.

This process may be repeated at different levels of abstraction with the sole objective of
extending the classes. As hierarchy structure becomes progressively higher, the amount of
specification and implementation inherited by the lower level classes increases. We may
repeat the process tntil we are sure thot vo now class can he farmed. Figure 17.18 illustrates
a two-level iteration process.

R

. S
b I
: ! 1
. S S [y !
[a " n | ¢ o] e
] S Lo Lo L=
(b) First leve! of hierarchy
C 7
/‘l,,, e
Lr . F‘
— ‘.AT T_J
‘ R ‘ ‘IL_M |
—_— R — — _’ v,;m -y P————
A ‘] ‘B | c D E |
- L Lo { | |

(c) Second level of hierarchy

Fig. 1718 ¢ Level of class hierarchies

i
N— N 5 A S A

486 @ Object-Oriented Programming with C++

The process of a class organization may finally result in a single-tree model as shown in
Fig. 17.19(a) or forest model as shown in Fig 17 19b)

\\ ;’“‘*—\
. _L [
- L — ;
]] /
A T R
{__*_J]
(a) Singe-tree modei
]
5 I
L]
/ \ |
// \\\‘ i
/ T
— o
i | Pt
e e AN
\\ // N\,
Lé N
| I !
L-J I

(b) Forest model

Fig. 17.19 < Orgamisation of classes %

Design of Classes

We have identified classes, their attributes, and minimal set of operations required by the
concept a class is representing. Now we must look at the complete details that each class
represents. The important issue is to decide what functions are to be provided. For a class
to be useful, it must contain the following functions, in addition to the service functions:

PR

Object-Oriented Systems Development ® 487

(lass management functions.

How an object is created?

How an object is destroyed?

Class implementation functions.

What vperations are performed on the data type of the class?

("lass access functions.

How do we get information about the internal variables of the ciass?
Ulass utility functions.

How do we handle errors?

thier ==t that are to be considered are:

What koad of access controls are required for the base classes?

Whe b futictions can be made virtual?

What library classes are expected to be used in a class?

Tre design of the individual classes has a major impact on the sverall guauty of the
software.

Given below are some guidelines which should be considered while designiny 5 class:

1.

f1.e public interface of a cluss should have only tuncuions of the ciass

A object of one class should not send a message directly to a menber of another
SR

A functwon should be deciared pubhe only when 1t is required to be used by the
ohyoowe of the class

Each function either accesses or modifies some data of the class it vepresents.

A class should be dependent on as few (nther) classes as possible

st ractions neiweern two classes must be explicit

Each subordinate class should be designed as a specialization of the base class with
the sole purpose of ad-ing additional features.

The top class of a structure should represent the abstract model of the target con-
cept.

Design of Member Functions

We have so far identified

O

.Cfl

classes and objects,

data members,

interfaces,

dependencies, and

class hierarchy (structure).

It is time now to consider the design of the member functions. The member functions
define the operations that are performed on the object's data. These functions behave like
any other C function and therefore we can use the top-down functional decomposition
technique to design them as shown in Fig. 17.20.

488 e Object-Oriented Programming with C++

!]

ey 4

Frrchion ¢ i i
e AU
{ Data |
s | N
b |
————1 Function 2] F
Object
~
P—
| A
ST
/// i \\
B C D
// AN / \

B1 B2 D1 D2 J
TN
\\ \\\ \
™. N\ /

B17 D17 |

Fig. 17.20 <« Top-down design of functions §

We may also apply the structured design techniques to each module. The basic structured
techniques supported by C++ are shown in Fig. 17.21. We may implement them in any
combination and in any order using one-entry, one-exit concept.

Object-Oriented Systems Development €489

Entry
j Entry
i !
B S ~
I Task 1 True T T False
L pr e Test Sy s ey
: s \’/ |
. JRR S SN S
| Task 2 \ Task 1 1 [Task 1
1 - ———
B = |
./
| Task3 | Sy
L,A__T_ i \
: Exit
\
Exit (b) Selection
(a) Sequence Entry
!
i)
)
N ;

S

1
~—_ [_‘_...___L_,__.. -
TJest > v—A[Task |

Exit
{c) Loop

Fig.17.21 < Structure design technigues

aspins o

Design of the Driver Program

Every C++ program must contain a main() function code known as the driver program. T'he
execution of the program begins and ends here. The driver program is mainly responsible
for:

1. receiving data values from the user,
2. creating objects from the class definitions,
3. arranging communication between the objects as a sequence of messages for invok-

ing the member functions, and
4. displaying output results in the form required by the user.

All activities, including processing during the execution of the program, result from the
mutual interactions of the objects. One major design decision to be made is the logical order
of the message passing.

490 Object-Oriented Programrung with C++

The driver program is the gateway to the users. Thercfore, the design of vser-svstem
interface (UST! should be given due consideration in the design of the driver program. The
svstem should be designed to be user-friendly 20 that users can cperate m 2 nutural and
comfortable way.

I 17.8 Implementation

{mplementation includes codivg and testing, Coding includes writing codes for classes,
maember funetions and the main program that acs as a driver m the program. Coding
becomes easy once a detailed design has been done with care.

No program works correctiy the hrst time. So testing the program before using s an
es-ential part of the sottware development process A detailed test plan should be drawn as
to what. when and how to test. The class intertaces and class dependencies are important
aspects for testing. The tinal goal of testing is to see that the svstem performs it- intended
Job satisfactoriiy.

|1‘7.9 Prototyping Paradigm

Mozt often the real-world application preblems are complex in natare and therefore the
structure of the system becomes too large to work out the precise requirements at the
beginning. Some particulars become known and clear only when we build and test the
svetem. After a large system is completed. incorporation or any feature that has been
iaentified as “missing” at the testing or application stage might be we expensive and tune
consuming. One way of understanding the system aesign and ds can

foatons beiore a
complete syatem = built is to build and test a working model of the proposed system. The
niodel system is popularly known as a prototype, and the process is called protoiyning. Since
the object-oriented analysis and design approach is evolutionary, it is best suited for
profoivarass poradigm which s illustrated in Fig, 17.22,

A prototype is a scaled down version of the system and may not have stringent performance
eriteria and resource requirements. Developer and customer agree upon certain “outline
specifications” of the system and a prototype design is proposed with the outline requirements
and available resources. The prototype is built and evaluated. The major interest is not in
the prototype itself but in its performance which is used to refine the requirement
specifications. Prototypes provide an opportunity to experiment and analyze various aspects
of the system such as system structure, internal design, hardware requirements and the
final svstem requirements. The benefits of using the prototype approach are:

& We can preduce understandabie specifications which are corvect and complete as
far as possible.

The user can understand what 1s being offered.

M\laintenance changes that are required when a svstem is installed, are minimized.

@ Development engineers can work from a set of specifications which have been tested
and approved.

Chjeci-Oriented Systems Devclopment 9 491

Uersige .
srerotpe

e ‘

| Build |
Loprotatyne |
e
| AN
| AN
l N |
: | Nt
‘ : Make
Jetaied !
| [§
'
i \\
' \ i “:,, ey
i I
‘ N S I ru !
i" | § <ystem i
- | Evaluate WL | POy |
prototype i [

Fig. 17.22 & Profotype paradigi:

Prototype is meant for experimenting. Most often it cannot be tuned into a product.
However. occasionally. it may be possible to tune a prototype into a final product if proper
care is taken in redesigning the prototype. The best approach i3 to throw away the prototype
after use.

l 17.10 Wrapping Up

We have discussed various aspects of the object-oriented analysis and design. Remember,
there is no one approach that is always right. You must consider the ideas presented here as
only guidelines and use your experience, innovation and creativity wherever possible.

Following are some points for vour thought and innovation:

1. Set clear goals and tangible objectives.
2. Try to use existing systems as examples or models to analyze your system.

492e Object-Oriented Programming with C++

&S

Mv

&

&

=

Use classes to represent concepts.

4. Keep in mind that the proposed system must be flexible, portable, and extend-
able.

5. Keep a clear documentation of everything that goes into the system.

6. Try to reuse the existing tunctions and classes.

/. Keep functions strongly typed wherever possible.
Use prototypes wherever possible.
9. Match design and programming style.

10. Keep the system clean, simple, small and efficient as far as possible.

SUMMARY

The classic system development life cycle most widely used for procedure oriented
development consists of following steps.

m Problem definition

& Analvsis

a Design

s Coding

m Testing

m Maintenance

In object oriented paradigm, a system can be viewed as a collection of entities that
interact together to accomplish certain objectives.

In object oriented analysis, the entities are called objects. Object oriented analysis (OOA)
refers to the methods of specifying requirements of the software in terms of real world
objects, their behaviour and their interactions with each other.

Object oriented design (OOD) translates the software requirements into specifications
for objects, and derives class hierarchies from which the objects can be created.
Object oriented programming (OOP) refers to the implementation of the program using
objects, with the help of object oriented programming language such as C++.

The object oriented analysis (OOA) approach consists of the following steps:

8 Defining the problem.

Estimating requirements of the user and the software.

Identifying the objects and their attributes.

Identifying the interface services that each object is supposed to provide.

Establishing interconnections between the objects in terms of services required and
services rendered.

The object oriented design (OOD) approach involves the following steps:
» Review of objects created in the analysis phase.
& Specification of class dependencies.

W

]

vn
F=4)

Drganization of class hierarchies.

Desiyn of classes.

Design of mewber functions.

Design of driver program.

Object-Oriented Systems Development

9493

Jne way of understanding the system design and its ramifications before a complete
eystem is built is to build and test a working mode! of the proposed system. This model
system is called the prototype, and the process is cailed prototyping.

The benefits of using the prototype approach are:

YV Y ¥ V¥ VV¥VY¥VYYV¥VVVVVYYVYY

You can produce understandable specifications which are correct and complete as

far as possible.

The user can understand what is being otfered.

Maintenance changes that are required when a system is installed are minimized.

Development engineers can work from a set of specifications, which have been tested

and approved.

abstract class

abstract nouns

a-kind-of

analysis

a-part-of

being verbs

bubble chart

class hierarchies

clagses

classic life cycle
classification relaticnship
client-server reiationship
coding

collaborations

COInMon nouns

compare verbs
composition relationship
containment relationship

context diagrams

YVVYVYVVYVYVYYVYYVYVVYVYVYYVYVYYY

Key Terms

Ioop

maintenance

mass nouns

member functions

message communications
methods

modular approach
object-oriented analysis
object-oriented design
cbject-oriented paradigm
object-oriented programming
objects

playscripts

problem definition

problem space
procedure-oriented paradigm
procedures

process layering

program flowcharts
(Contd)

494

¥ YYVYVYYVYYVYYVYVYVYVYYYVYVYYVY¥YYVYVYYVYY

data dictionary
data flow diagrams
decision table
decision tree
design
development tools
doing verbs

driver program
entities

entity relationship diagram

entity-relationship

fist generation
flowcharts

forest model

fountain model
functional decomposition
grid charts

has-a relationship
having verbs
hierarchical chart
information flow diagram
inheritance relationship
instances of objects

is-a relationship

layout forms

! Review Questions

VVYVYVYVYYVYYYYVYYYVYVYYVYYVYYVYYYY

Object-Oriented Programming with (C++

proper nouns
prototype
prototvping

prototyping paradigm

second generation
selection
sequence
single-tres modal
software life cycle
golution space
stative verbs
structure chart
structured design
structured tools
system flowcharts
testing

textual analysis
third generation
tools

top-down approach
traditional tools
use relationship
Warnier diagrams

water-iall model

17.1

17.2
17.3
17.4
17.5

176
17.7

List five most important features, in your opinion, that a software developer
should keep in mind while designing a system.

Describe why the testing of software is important.

What do you mean by maintenance of software? How and when is it done?
Who are the major players in each stage of the systems development life cycle?
Is it necessary to study the existing system during the analysis stoge? If yes,
why? If no, why not?

What are the limitations of the classic software development life cvele?
“Software development process is an iterative process”. Discuse

Object-Oriented Systems Development 9495

17.8 Distinguish between the “water-fall” model and the “fountain” model.

17.9 Distinguish between object-oriented systems analysis and systems design. Which
of the two requires more creative talents of the system developer?

17.10 Distinguish between the following.
(a) Classification relationship and composition relationship.
(b) Inheritance relationship and client-server relationship.
(¢c) Objects in problem space and objects in solution space.
(d) Data flow diagrams and hierarchical charts.
17.11 Discuss the application of structured design techniques in object-oriented
programming.
17.12 What are the critical issues that are to be considered while designing the driver
program? Why?
17.13 “No program works correctly first time.” Comment.
17.14 What is prototyping? How does it help improve the system design?
17.15 State whether the following statements are TRUE or FALSE.
(a) An important consideration when designing a new system is the end-user.
(b) The user has no role in the analysis and design of a system.
(¢) A decision table is a pictorial representation of data flow.
(d) The only useful purpose of data flow diagrams is documentation.
(e) Data flow diagrams stress logical flow of data versus physical flow of data.

() Computer outputs can be designed in such a way that it is a humanizing
force.

(g) Structured programming techniques have no place in the object-oriented
program -design.

(h) A prototype cannot be improved into a final product.

~ Appendix A

IA.l Memory Game

Learning Objectives
The designing of the Memory Game project enable the students to:

Create a simple C++ game application

Generate random values and explore the use of random functions
Handle arrays with pointers efficiently in the scope-based scenario

Use the gotoxy function to locate the cursor point effectively

Identify the levels of the project that map to the requirement standards

L R

Understanding the Memory Game

The game is about finding the matching pairs hidden in the 5 x 4 matrix. The matrix elements
are composed of numbers and characters. The matrix consists of 20 elements, of which 10 of
them are unique. The other 10 elements are the repetitions of the unique ones to match the
elements in the cells.

The initial screen displays the 5 x 4 matrix with all the elements being hidden under
the ‘@ symbol. The rows are named as ‘A’, ‘B’, ‘C’, ‘D’, ‘E’ and the columns are named
as ‘OY’ ‘17, ‘2” ’3"

The user needs to enter the cell number to open the respective cell. For example.

‘D3’ opens ‘Fourth row Fourth column element’.

and so on. If the two consecutive turned out cells do not match, then they are turned back to
the default symbol (‘@) when the third cell number is entered. On the other hand. if the

Appendix A 0497

turned out cells mateh, then the cell values remain visible. We have to find the next pair in
the similar manner.

When all the cells are turned out with the matching values, the GAME is OVER. A
screen <howing the number of tries taken to complete the matching pairs will be displayed.
If we want to continue the game, we can press 'Y to go to the initial screen to continue the
game. We can enter “-17 to terminate the game at any peint of time. The user interface of
the memory game project is shown below:

27 3

'A‘*******#*ﬁ'k*******#**f&‘**)

e @
e e e

A
B
¢
D
E

’Enter the cell number to be;obened::

Fig. A.1

Creating the Memory Game

To create the memory game application, a C++ source file and a C++ header file is created.
The source file 18 named as “MemoryGame.cpp” and the header file is named as
“RandomGeneration.h”

Creating the Source File (MemoryGame.cpp)

We need to create a class. called Game in the source file (MemoryGame.cpp) that does the
following tasks.

498 e Object-Oriented Programming with C++

Displaying a 5 x 4 matrix containing the default symbol (‘@").
Creating a 5 X 4 matrix containing the respective cell values.
Changing the cell values in the 5 x 4 matrix as per user entry.
Retaining the entries in the cells if the cell values are identical.
Identifving the location of the cells to place the matrix elements.
Counting the number of tries taken by the user to complete the game.

LR R N

To implement the above tasks, we need to create the Game class with appropriate member
variables and member functions as specified below.

Member Variables

Variable ' Description

boardDefault[5] [4] Specifies the matrix, whose elements are filled with default ‘@ symbol ,

boardSet[5] [4] Specifies the matrix, whose elements are filled with respective values in v
each cells.

boardCurrent[5] [4] Specifies the matrix, whose elements are filled with values as per the f
user entry.

Tries Counts the number of attempts taken by the user to complete the game

cmpl , cmp2 Used for comparing the values of two consecutive entries in the matrix. |

tl,t2,t3,t4 Used to retain the cell number of two consecutive cells entered by the
user.

Member Functions

Functions Description

CreateBoard Used to display the game board with the default ‘@ symbol.

CurrentMatrix Used to store and display the values in the game board when the user |
had started playing the game. '

FillBoard Used to fill a matrix with the values, that should be made visible whe
a cell is turned out. 4

ChangeCell Used to fill the turned out cell with the value generated by FillBoard |
function.

IdentifyLocation Used to find the location on the screen to place the turned out cell value.
It takes the cell number as its parameter. :

ReplaceWithDefault ~ Used to replace the turned out cell value with the default ‘@ symbol if |
two consecutive turned out cells are not identical. It takes the cell :
number as its parameter.

AR R

Creating the Header File (RandomGeneration.h)

The RandomGeneration.h header file contains the class called RandomGeneration, which
is responsible for generating a random number. The generated random number is used to
create differing values in the cells each time when the application is executed.

Appendix A © 499

The class has two member variables “Low” and “High with the default access. The member
functions used in the class along with their description is tabulated below:

Member Functions

Functions Description
DrawRandomNumber Generates the Random number and returns an integer type.
SetTimerSeed Sets the seed to generate the psuedo-random numbers.
GetHigh and GetLow Properties of the private members of the class to read their

values. Their return type is int.

Working with the Memory Game

As we know the structure of the classes and the purpose of the member functions, the
concentration is on defining and utilizing the member functions.

Identifying the cell locations

To display the matrix in the center of the screen, gotoxy function is used. There is no default
gotoxy function in C++. One of the functions to achieve this is with the use of “windows.h”
header file.

The code listing for the gotoxy function is specified below:

void gotoxy(short x, short y)

1

HANDLE hCon = GetStdHandle(STD _OUTPUT HANDLE);
COORD pos;

pos.X=x-1;

pos.Y=y-1;

SetConsoleCursorPosition(hCon, pos);

}

Displaying the Default Matrix

When the application is executed, a game board (with dimension 5 x 4) is displayed which
contains default ‘@ symbol in all 20 cells.

For each element in the 5 x 4 matrix, the placeholder for those elements is identified using
this gotoxy function. The matrix boardDefault|5][4] stores the default ‘@ symbol for all
cells. The position for placing these cell values is identified using gotoxy function.

Validating User Entry

If a particular cell is to be opened, we have to enter the respective cell number. When a cell
number is entered, we have to address the following issues:

500e- Object-Oriented Programming with C++

Whether the entered cell number is a valid cell number, that is, it falls within the
specified range.

If the cell number entered is the repeated, then proper error messages needs to be
supplied.

[f the entry 1s -1 then the user has the option to quit the game and proper mes-
sages needs to be specified for starting the game again.

Identifying the Cell Numbers

The cell number is of type charl|2] as it is a combination of alphabets and numbers (ftor
example A0, E3, cte). But the matrix indices are of type integers. Hence, we need to convert
each character in the cell number to its correspending integer tyvpe.

The code listing for identifying the first row elements is specified below:
{cellno variable contains the cell number entered by the user. Ex: If the user enters, say

“A07)

switch(cellno{0])

{
case 'A':
case 'a':
cell 1=0; break;
case 'B':
case ‘b':

ceil 1=3; break;

cell 1=4; break;
defauit

1,22+cnt);
\ i

nEnter valid coll no. ",

The above code checks whether cellno{0] falls in the specified range. in the same manner,
the cellno[1} is also converted to integer,

